Iterative algorithm for strongly continuous semigroup of Lipschitz pseudocontraction mappings
نویسندگان
چکیده
منابع مشابه
Iterative algorithm for strongly continuous semigroup of Lipschitz pseudocontraction mappings
In this paper, an implicit iterative process is considered for strongly continuous semigroup of Lipschitz pseudocontraction mappings. Weak and strong convergence theorems for common fixed points of strongly continuous semigroup of Lipschitz pseudocontraction mappings are established in a real Banach space. c ©2016 All rights reserved.
متن کاملWeak Convergence of Mann Iterative Algorithm for two Nonexpansive mappings
The mann fixed point algorithm play an importmant role in the approximation of fixed points of nonexpansive operators. In this paper, by considering new conditions, we prove the weak convergence of mann fixed point algorithm, for finding a common fixed point of two nonexpansive mappings in real Hilbert spaces. This results extend the privious results given by Kanzow and Shehu. Finally, we give ...
متن کاملGenerating Continuous Mappings with Lipschitz Mappings
If X is a metric space then CX and LX denote the semigroups of continuous and Lipschitz mappings, respectively, from X to itself. The relative rank of CX modulo LX is the least cardinality of any set U \LX where U generates CX . For a large class of separable metric spaces X we prove that the relative rank of CX modulo LX is uncountable. When X is the Baire space NN, this rank is א1. A large pa...
متن کاملAn iterative method for amenable semigroup and infinite family of non expansive mappings in Hilbert spaces
begin{abstract} In this paper, we introduce an iterative method for amenable semigroup of non expansive mappings and infinite family of non expansive mappings in the frame work of Hilbert spaces. We prove the strong convergence of the proposed iterative algorithm to the unique solution of a variational inequality, which is the optimality condition for a minimization problem. The results present...
متن کاملConvergence theorem for an iterative algorithm of λ-strict pseudocontraction
In this article, we prove strong convergence of sequence generated by the following iteration sequence for a class of Lipschitzian pseudocontractive mapping T: x n+1 = β n u + (1 − β n)[α n Tx n + (1 − α n)x n ] whenever {a n } and {b n } satisfy the appropriate conditions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Nonlinear Sciences and Applications
سال: 2016
ISSN: 2008-1901
DOI: 10.22436/jnsa.009.04.02